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1. Introduction

The differential equation governing the large amplitude vibrations of a constant tension string
[1,2] is

T

m
w00 ¼ ½1þ ðw0Þ2�2 .w; ð1Þ

where T is the tension in the string, m is the mass density per unit length, w is the lateral
displacement of the string, ð Þ0 denotes differentiation with respect to the axial co-ordinate x and
( � ) denotes differentiation with respect to the time.
The physical significance of such a constant tension string is the case of a string of finite

vibrating length between end points which are at a fixed distance apart as shown in Fig. 1.
Eq. (1) is solved in a comprehensive way, with rigorous mathematical treatment, by Gottlieb

[3]. An interesting discussion on this work can be seen in the study of Pillai and Nageswara Rao
[4].
The purpose of the present note is to present a simple numerical experiment, based on intuition,

to obtain the moderately large amplitude vibration behaviour of a constant tension string.

2. Numerical experiment

The lateral displacement distribution w of a constant tension string vibrating between two fixed
points, separated by a constant distance L; can be taken as

w ¼ a sin
px

L
; ð2Þ
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where a is the central amplitude. The displacement distribution chosen for w satisfies the
boundary conditions

wðoÞ ¼ wðLÞ ¼ 0: ð3Þ

The non-linear, non-dimensional period lp is defined as [4]

lp ¼
2poL

oNL

; ð4Þ

where oNL is the first mode non-linear radian frequency for a given amplitude parameter, defined
later, and oL is the linear radian frequency, given by [5] (neglecting the non-linear terms in
Eq. (1))

oL ¼
p
L

ffiffiffiffi
T

m

r
ð5Þ

for the first mode.
At this stage, oNL is assumed as

oNL ¼
p
L0

ffiffiffiffi
T

m

r
; ð6Þ

where L0 is the length of the deflected string between the two points and oNL is reinterpreted as the
first linear radian frequency of a string with length L0: Then Eq. (4) can be written as

lp ¼ 2p
L0

L
: ð7Þ

Knowing L0; the non-linear, non-dimensional period can be easily computed.

3. Evaluation of L0

Referring to Fig. 1, the infintesimal curved length ds of the string is expressed in terms of the
infinitesimal values dw and dx as

ds2 ¼ dw2 þ dx2 ð8Þ

Fig. 1. A constant tension vibrating string with large amplitudes.
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or

ds ¼ 1þ
dw

dx

� �2
" #1=2

dx: ð9Þ

Integrating Eq. (9) between the limits 0 to L; we get

Z L

0

ds ¼ L0 ¼
Z L

0

1þ
dw

dx

� �2
" #1=2

dx: ð10Þ

Substituting Eq. (2) into Eq. (10), L0 can be written as

L0 ¼
Z L

0

1þ a2 cos2
px

L

h i1=2
dx; ð11Þ

where a is the non-dimensional lateral central amplitude defined as

a ¼
ap
L
: ð12Þ

Non-dimensionalizing the axial co-ordinate x as

X ¼
x

L
; ð13Þ

Eq. (11) becomes

L0

L
¼

Z 1

0

1þ a2 cos2 pX

 �

dX : ð14Þ

The right-hand side of Eq. (14) can be numerically integrated using any standard integration
rule and L0=L can be obtained to any desired degree of accuracy. From Eq. (7), knowing the value
of L0=L for any a; the non-linear, non-dimensional period lp can be evaluated.

4. Error estimate of the intuitive method

It is necessary to obtain a closed form expression for the ratio of non-linear to linear time
periods TNL=TL obtained from the solution of the non-linear differential equation and the
intuitive method, as a function of the amplitude parameter a p=L

� 

: This complex task is

accomplished here with the assumption that w0 is smaller compared to unity.

4.1. Differential equation

The governing non-linear differential equation with the assumption mentioned above can be
written in a simplified form as

.w ¼
T

m
½1	 2w02� w00: ð15Þ
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Assuming variable separable solution

w ¼ wtwðxÞ; ð16Þ

where wt is a function of time only and the functional form of wðxÞ is given in Eq. (2).
Substituting Eq. (16) into Eq. (15), eliminating the space variable by using the standard

Galerkin method and after simplification, we get

.wt þ a1wt 	 a2w3
t ¼ 0; ð17Þ

where the subscript I denotes the solution obtained from the intuitive method:

a1 ¼
T

m

p
L

� �2

ð18Þ

and

a2 ¼
T

2m

p
L

� �4

: ð19Þ

Eq. (17) is the famous Duffing’s with softening non-linearity, the solution of which can be
obtained [6] as

TNL

TL

� �
’D

¼ 1þ 3
8
a2


 �
; ð20Þ

where the subscript D denotes the solution obtained from the differential equation.

5. Intuitive method

From Eq. (14), the expression for L0=L; using the aforementioned assumption, can be written as

L0

L
¼

Z 1

0

1þ
a2

2
cos2pX

� �
dX : ð21Þ

From Eqs. (17) and (21), the ratio of the non-linear to linear periods of the system for the
intuitive method can be written as

TNL

TL

� �
I

¼ 1þ 1
4
a2


 �
; ð22Þ

where the subscript I denotes the solution obtained from the intuitive method.
Now the error e involved in the intuitive method is

e ¼
TNL=TL

� 

D
	 TNL=TL

� 

I

TNL=TL

� 

D

; ð23Þ

which is a function of the amplitude parameter. It is to be noted here that this error estimate is
valid for smaller w0 compared to unity, which is the assumption made.
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6. Numerical results

The non-linear, non-dimensional period lp is evaluated, by numerically integrating Eq. (13) and
using Eq. (7), for a given non-dimensional central amplitude a: The values of lp obtained from the
present numerical experiment are given in Table 1, along with those obtained by Gottlieb [3] and
Pillai and Nageswara Rao [4] upto a ¼ 1:0; which is a moderately large central amplitude (the
central amplitude of vibration is approximately one-third of the distance of the support points). It
can be seen that the present results are in good agreement with those of Refs. [3,4]; the error being
around 1.3% for a ¼ 1:0: It may be stated here that beyond a ¼ 1:0; the present results are not
matching with those of Refs. [3,4], thus indicating that the numerical experiment, based on
intuition, is not valid beyond a ¼ 1:0: However, the non-dimensional central amplitude a ¼ 1:0 is
large enough for all practical purposes.
To show the validity of the intuitive method, theoretical estimates of the non-linear to linear

period ratios TNL=TL are obtained by solving for those, both from the non-linear differential
equation and from the present intuitive method. To achieve this complex task, an assumption that
w0 is smaller than unity is made. The values of lp obtained from both the solutions of the non-
linear differential equation and the present intuitive method along with the percentage error e
defined in Eq. (23) are given in Table 2. It can be seen that the percentage error is within tolerable

Table 1

Non-linear, non-dimensional period lp of a constant tension string

a lp

Present solution Gottlieb [3] Pillai and Nageswara Rao [4]

0.0 6.2832 (2p) — —

0.1 6.2989 6.2950 6.2950

0.2 6.3455 6.3305 6.3305

0.3 6.4223 — —

0.4 6.5274 — —

0.5 6.6592 6.5838 6.5838

0.6 6.8153 — —

0.7 6.9936 — —

0.8 7.1919 — —

0.9 7.4082 — —

1.0 7.6404 7.5415 7.5415

Table 2

Numerical results from error estimates

a lPD lPI % Error e (Eq. (23))

0.0 6.2832 (2p) 6.2832 (2p) 0.0

0.1 6.3067 6.2989 0.1245

0.2 6.3774 6.3460 0.4926

0.3 6.4952 6.4246 1.0883

0.4 6.6602 6.5345 1.8868

0.5 6.8722 6.6759 2.8571
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limits upto the value of the amplitude parameter a ¼ 0:5: Further, it may be noted that the
assumption on w0 gives more error in the solution of the non-linear differential equation than the
present intuitive method for a greater than 0.5. However, as mentioned earlier, the present
intuitive method gives reliable values for lp upto a ¼ 1:0:

7. Concluding remarks

A numerical experiment, based on intuition, is presented in this note to obtain the non-linear
periods of a string, with constant tension, undergoing moderately large amplitude vibrations. The
numerical experiment gives results which are valid upto a central amplitude equals to
approximately one-third of the distance of the support points, and starts failing when the
amplitude exceeds this limit. Theoretical estimates of error presented show the usefulness of the
intuitive method. However, further theoretical and numerical investigations are necessary to know
why the numerical experiment fails beyond a certain amplitude, even though this amplitude is
large enough for all practical purposes.
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